%0 Journal Article %T The Brownian map is the scaling limit of uniform random plane quadrangulations %A Gr¨¦gory Miermont %J Mathematics %D 2011 %I arXiv %X We prove that uniform random quadrangulations of the sphere with $n$ faces, endowed with the usual graph distance and renormalized by $n^{-1/4}$, converge as $n\to\infty$ in distribution for the Gromov-Hausdorff topology to a limiting metric space. We validate a conjecture by Le Gall, by showing that the limit is (up to a scale constant) the so-called {\em Brownian map}, which was introduced by Marckert & Mokkadem and Le Gall as the most natural candidate for the scaling limit of many models of random plane maps. The proof relies strongly on the concept of {\em geodesic stars} in the map, which are configurations made of several geodesics that only share a common endpoint and do not meet elsewhere. %U http://arxiv.org/abs/1104.1606v2