%0 Journal Article %T Polynomial partitioning for a set of varieties %A Larry Guth %J Mathematics %D 2014 %I arXiv %R 10.1017/S0305004115000468 %X Given a set $\Gamma$ of low-degree k-dimensional varieties in $\mathbb{R}^n$, we prove that for any $D \ge 1$, there is a non-zero polynomial $P$ of degree at most $D$ so that each component of $\mathbb{R}^n \setminus Z(P)$ intersects $O(D^{k-n} |\Gamma|)$ varieties of $\Gamma$. %U http://arxiv.org/abs/1410.8871v2