%0 Journal Article %T Bergman kernel and projection on the unbounded worm domain %A Steven G. Krantz %A Marco M. Peloso %A Caterina Stoppato %J Mathematics %D 2014 %I arXiv %R 10.2422/2036-2145.201503_012 %X In this paper we study the Bergman kernel and projection on the unbounded worm domain $$ \mathcal{W}_\infty = \big\{(z_1,z_2)\in\mathbb{C}^2 : \big|z_1-e^{i\log|z_2|^2}\big|^2<1, z_2\neq0\big\}. $$ We first show that the Bergman space of $\mathcal{W}_\infty$ is infinite dimensional. Then we study Bergman kernel $K$ and Bergman projection $\mathcal{P}$ for $\mathcal{W}_\infty$. We prove that $K(z,w)$ extends holomorphically in $z$ (and antiholomorphically in $w$) near each point of the boundary except for a specific subset that we study in detail. By means of an appropriate asymptotic expansion for $K$, we prove that the Bergman projection $\mathcal{P}:W^s\not\to W^s$ if $s>0$ and $\mathcal{P}:L^p\not\to L^p$ if $p\neq2$, where $W^s$ denotes the classic Sobolev space, and $L^p$ the Lebesgue space, respectively, on $\mathcal{W}_\infty$. %U http://arxiv.org/abs/1410.8490v2