%0 Journal Article %T A sharp constant for the Bergman projection %A Marijan Markovic %J Mathematics %D 2014 %I arXiv %X For the Bergman projection operator $P$ we prove that $ \|P\|_{{L^1(B,d\lambda)\rightarrow B_1}}= \frac {(2n+1)!}{n!}.$ Here $\lambda$ stands for the invariant metric in the unit ball $B$ of $\mathbf{C}^n$, and $B_1$ denotes the Besov space with an adequate semi--norm. We also consider a generalization of this result. This generalizes some recent results due to Per\"{a}l\"{a}. %U http://arxiv.org/abs/1406.4163v4