%0 Journal Article %T Complete Residue Systems at the Exponent %A Paolo Leonetti %J Mathematics %D 2013 %I arXiv %X Given a positive integer $n$, it is asked whether there exists of a permutation $\sigma$ of $\{1,\ldots,n\}$ such that $\{1^{\sigma(1)},\ldots,n^{\sigma(n)}\}$ is still a complete residue system modulo $n$. The answer will be given for almost all $n$. %U http://arxiv.org/abs/1305.0893v2