%0 Journal Article %T Half-commutative orthogonal Hopf algebras %A Julien Bichon %A Michel Dubois-Violette %J Mathematics %D 2012 %I arXiv %X A half-commutative orthogonal Hopf algebra is a Hopf *-algebra generated by the self-adjoint coefficients of an orthogonal matrix corepresentation $v=(v_{ij})$ that half commute in the sense that $abc=cba$ for any $a,b,c \in \{v_{ij}\}$. The first non-trivial such Hopf algebras were discovered by Banica and Speicher. We propose a general procedure, based on a crossed product construction, that associates to a self-transpose compact subgroup $G \subset U_n$ a half-commutative orthogonal Hopf algebra $\mathcal A_*(G)$. It is shown that any half-commutative orthogonal Hopf algebra arises in this way. The fusion rules of $\mathcal A_*(G)$ are expressed in term of those of $G$. %U http://arxiv.org/abs/1202.5120v1