%0 Journal Article %T Horn versus full first-order: complexity dichotomies in algebraic constraint satisfaction %A Manuel Bodirsky %A Peter Jonsson %A Timo von Oertzen %J Mathematics %D 2010 %I arXiv %X We study techniques for deciding the computational complexity of infinite-domain constraint satisfaction problems. For certain fundamental algebraic structures Delta, we prove definability dichotomy theorems of the following form: for every first-order expansion Gamma of Delta, either Gamma has a quantifier-free Horn definition in Delta, or there is an element d of Gamma such that all non-empty relations in Gamma contain a tuple of the form (d,...,d), or all relations with a first-order definition in Delta have a primitive positive definition in Gamma. The results imply that several families of constraint satisfaction problems exhibit a complexity dichotomy: the problems are in P or NP-hard, depending on the choice of the allowed relations. As concrete examples, we investigate fundamental algebraic constraint satisfaction problems. The first class consists of all first-order expansions of (Q;+). The second class is the affine variant of the first class. In both cases, we obtain full dichotomies by utilising our general methods. %U http://arxiv.org/abs/1005.1141v2