%0 Journal Article %T On It£¿'s formula for symmetric $¦Á$-stable L¨¦vy process of index $1<¦Á\leq 2 $ %A Rachid Belfadli %A Youssef Ouknine %J Mathematics %D 2010 %I arXiv %X We use Young integration (resp, bounded $p,q$-variation theory introduced in \cite{Feng-Zhao}) to establish integration of determinate functions with respect to local time of symmetric $\alpha$-stable L\'evy process, for $\alpha \in ]1,2]$, in one parameter case (resp, in two parameter case). We then apply these integrals to write the corresponding generalized It\^{o} formula. Furthermore, some approximations schemes of the area integral w.r.t local time are given. %U http://arxiv.org/abs/1003.5367v2