%0 Journal Article %T On the Clifford-Fourier transform %A H. De Bie %A Y. Xu %J Mathematics %D 2010 %I arXiv %X For functions that take values in the Clifford algebra, we study the Clifford-Fourier transform on $R^m$ defined with a kernel function $K(x,y) := e^{\frac{i \pi}{2} \Gamma_{y}}e^{-i }$, replacing the kernel $e^{i }$ of the ordinary Fourier transform, where $\Gamma_{y} := - \sum_{j