%0 Journal Article %T Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in $L^p$ implies uniform rectifiability %A Steve Hofmann %A J. M. Martell %J Mathematics %D 2015 %I arXiv %X Let $E\subset \mathbb{R}^{n+1}$, $n\ge 2$, be an Ahlfors-David regular set of dimension $n$. We show that the weak-$A_\infty$ property of harmonic measure, for the open set $\Omega:= \mathbb{R}^{n+1}\setminus E$, implies uniform rectifiability of $E$. %U http://arxiv.org/abs/1505.06499v1