%0 Journal Article %T Successive coefficients of convex functions %A Derek Thomas %J Mathematics %D 2015 %I arXiv %X It is shown that for $f$ analytic and convex in $z\in D=\{z:|z|<1\}$ and given by $f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}$, the difference of coefficients $||a_{3}|-|a_{2}||\le 25/48$ and $||a_{4}|-|a_{3}||\le 25/48$ . Both inequalities are sharp. %U http://arxiv.org/abs/1502.00923v2