%0 Journal Article %T Proof of a conjectural supercongruence %A Xiang-Zi Meng %A Zhi-Wei Sun %J Mathematics %D 2015 %I arXiv %X Let $m>2$ and $q>0$ be integers with $m$ even or $q$ odd. We show the supercongruence $$\sum_{k=0}^{p-1}(-1)^{km}\binom{p/m-q}{k}^m\equiv0\pmod{p^3}.$$ for any prime $p>mq$. This confirms a conjecture of Sun. %U http://arxiv.org/abs/1502.06909v3