%0 Journal Article %T Probabilistic Galois Theory %A Rainer Dietmann %J Mathematics %D 2011 %I arXiv %R 10.1112/blms/bds113 %X We show that there are at most $O_{n,\epsilon}(H^{n-2+\sqrt{2}+\epsilon})$ monic integer polynomials of degree $n$ having height at most $H$ and Galois group different from the full symmetric group $S_n$, improving on the previous 1973 world record $O_{n}(H^{n-1/2}\log H)$. %U http://arxiv.org/abs/1111.2853v1