%0 Journal Article %T Average dimension of fixed point spaces with applications %A Robert M. Guralnick %A Attila Maroti %J Mathematics %D 2010 %I arXiv %X Let $G$ be a finite group, $F$ a field, and $V$ a finite dimensional $FG$-module such that $G$ has no trivial composition factor on $V$. Then the arithmetic average dimension of the fixed point spaces of elements of $G$ on $V$ is at most $(1/p) \dim V$ where $p$ is the smallest prime divisor of the order of $G$. This answers and generalizes a 1966 conjecture of Neumann which also appeared in a paper of Neumann and Vaughan-Lee and also as a problem in The Kourovka Notebook posted by Vaughan-Lee. Our result also generalizes a recent theorem of Isaacs, Keller, Meierfrankenfeld, and Moret\'o. Various applications are given. For example, another conjecture of Neumann and Vaughan-Lee is proven and some results of Segal and Shalev are improved and/or generalized concerning BFC groups. %U http://arxiv.org/abs/1001.3836v1