%0 Journal Article %T Quasi-multipliers of Hilbert and Banach C*-bimodules %A Alexander Pavlov %A Ulrich Pennig %A Thomas Schick %J Mathematics %D 2010 %I arXiv %X Quasi-multipliers for a Hilbert C*-bimodule V were introduced by Brown, Mingo and Shen 1994 as a certain subset of the Banach bidual module V**. We give another (equivalent) definition of quasi-multipliers for Hilbert C*-bimodules using the centralizer approach and then show that quasi-multipliers are, in fact, universal (maximal) objects of a certain category. We also introduce quasi-multipliers for bimodules in Kasparov's sense and even for Banach bimodules over C*-algebras, provided these C*-algebras act non-degenerately. A topological picture of quasi-multipliers via the quasi-strict topology is given. Finally, we describe quasi-multipliers in two main situations: for the standard Hilbert bimodule l_2(A) and for bimodules of sections of Hilbert C*-bimodule bundles over locally compact spaces. %U http://arxiv.org/abs/1002.3886v2