%0 Journal Article %T The geometric Hopf invariant and double points %A Michael Crabb %A Andrew Ranicki %J Mathematics %D 2010 %I arXiv %X The geometric Hopf invariant of a stable map F is a stable Z_2-equivariant map h(F) such that the stable Z_2-equivariant homotopy class of h(F) is the primary obstruction to F being homotopic to an unstable map. In this paper we express the geometric Hopf invariant of the Umkehr map F of an immersion f:M^m \to N^n in terms of the double point set of f. We interpret the Smale-Hirsch-Haefliger regular homotopy classification of immersions f in the metastable dimension range 3m<2n-1 (when a generic f has no triple points) in terms of the geometric Hopf invariant. %U http://arxiv.org/abs/1002.2907v2