%0 Journal Article %T On $(\varepsilon)$-para Sasakian 3-manifolds %A Selcen Y¨¹ksel Perkta£¿ %A Erol K£¿l£¿ £¿ %A Mukut Mani Tripathi %A Sad£¿k Kele£¿ %J Mathematics %D 2009 %I arXiv %X In this paper we study the 3-dimensional $(\varepsilon) $-para Sasakian manifolds. We obtain an necessary and sufficient condition for an $(\varepsilon ) $-para Sasakian 3 -manifold to be an indefinite space form. We show that a Ricci-semi-symmetric $(\varepsilon) $-para Sasakian 3 -manifold is an indefinite space form. We investigate the necessary and sufficient condition for an $(\varepsilon) $-para Sasakian 3 -manifold to be locally $\varphi $-symmetric. It is proved that in an $ (\varepsilon) $-para Sasakian 3-manifold with $\eta $ -parallel Ricci tensor the scalar curvature is constant. It is also shown that every $(\varepsilon) $-para Sasakian 3-manifolds is pseudosymmetric in the sense of R. Deszcz. %U http://arxiv.org/abs/0911.4786v2