%0 Journal Article %T Cantor Series Constructions Contrasting Two Notions of Normality %A Christian Altomare %A Bill Mance %J Mathematics %D 2009 %I arXiv %X A. R\'enyi \cite{Renyi} made a definition that gives a generalization of simple normality in the context of $Q$-Cantor series. In \cite{Mance}, a definition of $Q$-normality was given that generalizes the notion of normality in the context of $Q$-Cantor series. In this work, we examine both $Q$-normality and $Q$-distribution normality, treated in \cite{Laffer} and \cite{Salat}. Specifically, while the non-equivalence of these two notions is implicit in \cite{Laffer}, in this paper, we give an explicit construction witnessing the nontrivial direction. That is, we construct a base $Q$ as well as a real $x$ that is $Q$-normal yet not $Q$-distribution normal. We next approach the topic of simultaneous normality by constructing an explicit example of a base $Q$ as well as a real $x$ that is both $Q$-normal and $Q$-distribution normal. %U http://arxiv.org/abs/0911.4277v2