%0 Journal Article %T Regularization properties of the 2D homogeneous Boltzmann equation without cutoff %A Vlad Bally %A Nicolas Fournier %J Mathematics %D 2009 %I arXiv %X We consider the 2-dimensional spatially homogeneous Boltzmann equation for hard potentials. We assume that the initial condition is a probability measure that has some exponential moments and is not a Dirac mass. We prove some regularization properties: for a class of very hard potentials, the solution instantaneously belongs to $H^r$, for some $r\in (-1,2)$ depending on the parameters of the equation. Our proof relies on the use of a well-suited Malliavin calculus for jump processes. %U http://arxiv.org/abs/0911.2614v2