%0 Journal Article %T Monoidal 2-structure of Bimodule Categories %A Justin Greenough %J Mathematics %D 2009 %I arXiv %R 10.1016/j.jalgebra.2010.06.018 %X We define a notion of tensor product of bimodule categories and prove that with this product the 2-category of C-bimodule categories for fixed tensor C is a monoidal 2-category in the sense of Kapranov and Voevodsky. We then provide a monoidal-structure preserving 2-equivalence between the 2-category of C-bimodule categories and Z(C)-module categories (module categories over the center). For finite group G we show that de-equivariantization is equivalent to tensor product over category Rep(G) of finite dimensional representations. We derive Rep(G)-module fusion rules and determine the group of invertible irreducible Rep(G)-module categories extending earlier results for abelian groups. %U http://arxiv.org/abs/0911.4979v4