%0 Journal Article %T Quadrangles embedded in metasymplectic spaces %A Koen Struyve %J Mathematics %D 2009 %I arXiv %X During the final steps in the classification of the Moufang quadrangles by Jacques Tits and Richard Weiss a new class of Moufang quadrangles unexpectedly turned up. Subsequently Bernhard Muhlherr and Hendrik Van Maldeghem showed that this class arises as the fixed points and hyperlines of certain involutions of a metasymplectic space (or equivalently a building of type F_4). In the same paper they also showed that other types of Moufang quadrangles can be embedded in a metasymplectic space as points and hyperlines. In this paper, we reverse the question: given a (thick) quadrangle embedded in a metasymplectic space as points and hyperlines, when is such a quadrangle a Moufang quadrangle? %U http://arxiv.org/abs/0909.4960v1