%0 Journal Article %T Dilating covariant representations of the non-commutative disc algebras %A K. R. Davidson %A E. G. Katsoulis %J Mathematics %D 2009 %I arXiv %X Let $\phi$ be an isometric automorphism of the non-commutative disc algebra $\fA_n$ for $n \geq 2$. We show that every contractive covariant representation of $(\fA_n, \phi)$ dilates to a unitary covariant representation of $(\O_n, \phi)$. Hence the C*-envelope of the semicrossed product $\fA_n \times_{\phi} \bZ^+$ is $\O_n \times_{\phi} \bZ$. %U http://arxiv.org/abs/0904.2877v1