%0 Journal Article %T Indecomposables live in all smaller lengths %A Klaus Bongartz %J Mathematics %D 2009 %I arXiv %X Let k be an algebraically closed field and A a finite dimensional associative k-algebra. We prove that there is no gap in the lengths of indecomposable A-modules of finite length. The analogous result holds for an abelian k-linear category C if the endomorphism algebras of the simples are k. %U http://arxiv.org/abs/0904.4609v2