%0 Journal Article %T Proof of the Caratheodory Conjecture %A Brendan Guilfoyle %A Wilhelm Klingenberg %J Mathematics %D 2008 %I arXiv %X A well-known conjecture of Caratheodory states that the number of umbilic points on a closed convex surface in ${\mathbb E}^3$ must be greater than one. In this paper we prove this for $C^{3+\alpha}$-smooth surfaces. The Conjecture is first reformulated in terms of complex points on a Lagrangian surface in $TS^2$, viewed as the space of oriented geodesics in ${\mathbb E}^3$. Here complex and Lagrangian refer to the canonical neutral Kaehler structure on $TS^2$. We then prove that the existence of a closed convex surface with only one umbilic point implies the existence of a totally real Lagrangian hemisphere in $TS^2$, to which it is not possible to attach the edge of a holomorphic disc. The main step in the proof is to establish the existence of a holomorphic disc with edge contained on any given totally real Lagrangian hemisphere. To construct the holomorphic disc we utilize mean curvature flow with respect to the neutral metric. Long-time existence of this flow is proven by a priori estimates and we show that the flowing disc is asymptotically holomorphic. Existence of a holomorphic disc is then deduced from Schauder estimates. %U http://arxiv.org/abs/0808.0851v3