%0 Journal Article %T Jumping sequences %A Steve Butler %A Ron Graham %A Nan Zang %J Mathematics %D 2008 %I arXiv %X An integer sequence a(n) is called a jump sequence if a(1)=1 and 1<=a(n)=2. Such a sequence has the property that a^k(n)=a(a(...(a(n))...)) goes to 1 in finitely many steps and we call the pattern (n,a(n),a^2(n),...,a^k(n)=1) a jumping pattern from n down to 1. In this paper we look at jumping sequences which are weight minimizing with respect to various weight functions (where a weight w(i,j) is given to each jump from j down to i). Our main result is to show that if w(i,j)=(i+j)/i^2 then the cost minimizing jump sequence has the property that the number m satisfies m=a^q(p) for arbitrary q and some p (depending on q) if and only if m is a Pell number. %U http://arxiv.org/abs/0807.2890v1