%0 Journal Article %T Test elements, retracts and automorphic orbits %A Sheng-Jun Gong %A Jie-Tai Yu %J Mathematics %D 2008 %I arXiv %X Let $A_2$ be a free associative or polynomial algebra of rank two over a field $K$ of characteristic zero. Based on the degree estimate of Makar-Limanov and J.-T.Yu, we prove: 1) An element $p \in A_2$ is a test element if $p$ does not belong to any proper retract of $A_2$; 2) Every endomorphism preserving the automorphic orbit of a nonconstant element of $A_2$ is an automorphism. %U http://arxiv.org/abs/0807.1142v1