%0 Journal Article %T The homotopy type of the space of symplectic balls in rational ruled 4-manifolds %A Silvia Anjos %A Francois Lalonde %A Martin Pinsonnault %J Mathematics %D 2008 %I arXiv %R 10.2140/gt.2009.13.1177 %X Let M:=(M^{4},\om) be a 4-dimensional rational ruled symplectic manifold and denote by w_{M} its Gromov width. Let Emb_{\omega}(B^{4}(c),M) be the space of symplectic embeddings of the standard ball B^4(c) \subset \R^4 of radius r and of capacity c:= \pi r^2 into (M,\om). By the work of Lalonde and Pinsonnault, we know that there exists a critical capacity \ccrit \in (0,w_{M}] such that, for all c\in(0,\ccrit), the embedding space Emb_{\omega}(B^{4}(c),M) is homotopy equivalent to the space of symplectic frames \SFr(M). We also know that the homotopy type of Emb_{\omega}(B^{4}(c),M) changes when c reaches \ccrit and that it remains constant for all c \in [\ccrit,w_{M}). In this paper, we compute the rational homotopy type, the minimal model, and the cohomology with rational coefficients of \Emb_{\omega}(B^{4}(c),M) in the remaining case c \in [\ccrit,w_{M}). In particular, we show that it does not have the homotopy type of a finite CW-complex. %U http://arxiv.org/abs/0807.1031v2