%0 Journal Article %T Homogeneous products of conjugacy classes %A Edith Adan-Bante %J Mathematics %D 2006 %I arXiv %X Let $G$ be a finite group and $a\in G$. Let $a^G=\{g^{-1}ag\mid g\in G\}$ be the conjugacy class of $a$ in $G$. Assume that $a^G$ and $b^G$ are conjugacy classes of $G$ with the property that ${\bf C}_G(a)={\bf C}_G(b)$. Then $a^G b^G$ is a conjugacy class if and only if $[a,G]=[b,G]=[ab,G]$ and $[ab,G]$ is a normal subgroup of $G$. %U http://arxiv.org/abs/math/0612722v1