%0 Journal Article %T Pure-injective hulls of modules over valuation rings %A Francois Couchot %J Mathematics %D 2004 %I arXiv %R 10.1016/j.jpaa.2005.09.002 %X If $\hat{R} is the pure-injective hull of a valuation ring $R$, it is proved that $\hat{R}\otimes\_RM$ is the pure-injective of $M$, for each finitely generated module $M$. Moreover, $\hat{R}\otimes\_RM\simeq\oplus\_{1\leq k\leq n}\hat{R}/A\_k\hat{R}$, where $A\_1,...,A\_n$ is the annihilator sequence of $M$. The pure-injective hulls of uniserial or polyserial modules are also investigated. Any two pure-composition series of a countably generated polyserial module are isomorphic. %U http://arxiv.org/abs/math/0411482v2