%0 Journal Article %T Equivalences of comodule categories for coalgebras over rings %A Khaled Al-Takhman %J Mathematics %D 2001 %I arXiv %X In this article we defined and studied quasi-finite comodules, the cohom functors for coalgebras over rings. linear functors between categories of comodules are also investigated and it is proved that good enough linear functors are nothing but a cotensor functor. Our main result of this work characterizes equivalences between comodule categories generalizing the Morita-Takeuchi theory to coalgebras over rings. Morita-Takeuchi contexts in our setting is defined and investigated, a correspondence between strict Morita-Takeuchi contexts and equivalences of comodule categories over the involved coalgebras is obtained. Finally we proved that for coalgebras over QF-rings Takeuchi's representation of the cohom-functor is also valid. %U http://arxiv.org/abs/math/0109061v1