%0 Journal Article %T Theory of multi-fans %A Akio Hattori %A Mikiya Masuda %J Mathematics %D 2001 %I arXiv %X We introduce the notion of a multi-fan. It is a generalization of that of a fan in the theory of toric variety in algebraic geometry. Roughly speaking a toric variety is an algebraic variety with an action of algebraic torus of the same dimension as that of the variety, and a fan is a combinatorial object associated with the toric variety. Algebro-geometric properties of the toric variety can be described in terms of the associated fan. We develop a combinatorial theory of multi-fans and define ``topological invariants'' of a multi-fan. A smooth manifold with an action of a compact torus of half the dimension of the manifold and with some orientation data is called a torus manifold. We associate a multi-fan with a torus manifold, and apply the combinatorial theory to describe topological invariants of the torus manifold. A similar theory is also given for torus orbifolds. As a related subject a generalization of the Ehrhart polynomial concerning the number of lattice points in a convex polytope is discussed. %U http://arxiv.org/abs/math/0106229v3