%0 Journal Article %T Unknotting tunnels and Seifert surfaces %A Martin Scharlemann %A Abigail Thompson %J Mathematics %D 2000 %I arXiv %X Let $K$ be a knot with an unknotting tunnel $\gamma$ and suppose that $K$ is not a 2-bridge knot. There is an invariant $\rho = p/q \in \mathbb{Q}/2 \mathbb{Z}$, $p$ odd, defined for the pair $(K, \gamma)$. The invariant $\rho$ has interesting geometric properties: It is often straightforward to calculate; e. g. for $K$ a torus knot and $\gamma$ an annulus-spanning arc, $\rho(K, \gamma) = 1$. Although $\rho$ is defined abstractly, it is naturally revealed when $K \cup \gamma$ is put in thin position. If $\rho \neq 1$ then there is a minimal genus Seifert surface $F$ for $K$ such that the tunnel $\gamma$ can be slid and isotoped to lie on $F$. One consequence: if $\rho(K, \gamma) \neq 1$ then $genus(K) > 1$. This confirms a conjecture of Goda and Teragaito for pairs $(K, \gamma)$ with $\rho(K, \gamma) \neq 1$. %U http://arxiv.org/abs/math/0010212v1