%0 Journal Article %T On asymptotic properties of Banach spaces under renormings %A Edward Odell %A Thomas Schlumprecht %J Mathematics %D 1997 %I arXiv %X It is shown that a separable Banach space $X$ can be given an equivalent norm $|\!|\!|\cdot |\!|\!|$ with the following properties:\quad If $(x_n)\subseteq X$ is relatively weakly compact and $\lim_{m\to\infty} \lim_{n\to\infty}\break |\!|\!| x_m + x_n |\!|\!| = 2\lim_{m\to\infty} |\!|\!| x_m|\!|\!|$ then $(x_n)$ converges in norm. This yields a characterization of reflexivity once proposed by V.D.~Milman. In addition it is shown that some spreading model of a sequence in $(X, |\!|\!|\cdot |\!|\!|)$ is 1-equivalent to the unit vector basis of $\ell_1$ (respectively, $c_0$) implies that $X$ contains an isomorph of $\ell_1$ (respectively, $c_0$). %U http://arxiv.org/abs/math/9709217v1