%0 Journal Article %T Boundedness for fractional Hardy-type operator on variable exponent Herz-Morrey spaces %A Jiang-Long Wu %A Wen-Jiao Zhao %J Mathematics %D 2015 %I arXiv %X In this paper, the fractional Hardy-type operator of variable order $\beta(x)$ is shown to be bounded from the variable exponent Herz-Morrey spaces $M\dot{K}_{p_{_{1}},q_{_{1}}(\cdot)}^{\alpha(\cdot),\lambda}(\R^{n})$ into the weighted space $M\dot{K}_{p_{_{2}},q_{_{2}}(\cdot)}^{\alpha(\cdot),\lambda}(\R^{n},\omega)$, where $\alpha(x)\in L^{\infty}(\mathbb{R}^{n})$ be log-H\"older continuous both at the origin and at infinity, $\omega=(1+|x|)^{-\gamma(x)}$ with some $\gamma(x)>0$ and $ 1/q_{_{1}}(x)-1/q_{_{2}}(x)=\beta(x)/n$ when $q_{_{1}}(x)$ is not necessarily constant at infinity. %U http://arxiv.org/abs/1511.02269v1