%0 Journal Article %T Riesz-like bases in rigged Hilbert spaces %A Giorgia Bellomonte %A Camillo Trapani %J Mathematics %D 2015 %I arXiv %X The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis are generalized to a rigged Hilbert space $\D[t] \subset \H \subset \D^\times[t^\times]$. A Riesz-like basis, in particular, is obtained by considering a sequence $\{\xi_n\}\subset \D$ which is mapped by a one-to-one continuous operator $T:\D[t]\to\H[\|\cdot\|]$ into an orthonormal basis of the central Hilbert space $\H$ of the triplet. The operator $T$ is, in general, an unbounded operator in $\H$. If $T$ has a bounded inverse then the rigged Hilbert space is shown to be equivalent to a triplet of Hilbert spaces. %U http://arxiv.org/abs/1511.05466v1