%0 Journal Article %T Helson's problem for sums of a random multiplicative function %A Andriy Bondarenko %A Kristian Seip %J Mathematics %D 2014 %I arXiv %R 10.1112/S0025579315000236 %X We consider the random functions $S_N(z):=\sum_{n=1}^N z(n) $, where $z(n)$ is the completely multiplicative random function generated by independent Steinhaus variables $z(p)$. It is shown that ${\Bbb E} |S_N|\gg \sqrt{N}(\log N)^{-0.05616}$ and that $({\Bbb E} |S_N|^q)^{1/q}\gg_{q} \sqrt{N}(\log N)^{-0.07672}$ for all $q>0$. %U http://arxiv.org/abs/1411.6388v2