%0 Journal Article %T Neighborhoods on the Grasmannian of marginals with bounded isotropic constant %A Grigoris Paouris %A Petros Valettas %J Mathematics %D 2014 %I arXiv %X We show that for any isotropic log-concave probability measure $\mu$ on $\mathbb R^n$, for every $\varepsilon > 0$, every $1 \leq k \leq \sqrt{n}$ and any $E \in G_{n,k}$ there exists $F \in G_{n,k}$ with $d(E,F) < \varepsilon$ and $L_{\pi_F\mu} < C/\varepsilon$. %U http://arxiv.org/abs/1404.4988v1