%0 Journal Article %T Some Hecke Algebra Products and Corresponding Random Walks %A Rosena R. X. Du %A Richard P. Stanley %J Mathematics %D 2008 %I arXiv %X Let $\bm{i}=1+q+...+q^{i-1}$. For certain sequences $(r_1,...,r_l)$ of positive integers, we show that in the Hecke algebra $\mathscr{H}_n(q)$ of the symmetric group $\mathfrak{S}_n$, the product $(1+\bm{r_1}T_{r_1})... (1+\bm{r_l}T_{r_l})$ has a simple explicit expansion in terms of the standard basis $\{T_w\}$. An interpretation is given in terms of random walks on $\mathfrak{S}_n$. %U http://arxiv.org/abs/0809.0166v2