%0 Journal Article %T Abelian Varieties with Prescribed Embedding Degree %A David Freeman %A Peter Stevenhagen %A Marco Streng %J Mathematics %D 2008 %I arXiv %X We present an algorithm that, on input of a CM-field $K$, an integer $k\ge1$, and a prime $r \equiv 1 \bmod k$, constructs a $q$-Weil number $\pi \in \O_K$ corresponding to an ordinary, simple abelian variety $A$ over the field $\F$ of $q$ elements that has an $\F$-rational point of order $r$ and embedding degree $k$ with respect to $r$. We then discuss how CM-methods over $K$ can be used to explicitly construct $A$. %U http://arxiv.org/abs/0802.1886v1