%0 Journal Article %T Qregularity and an Extension of Evans-Griffiths Criterion to Vector Bundles on Quadrics %A Edoardo Ballico %A Francesco Malaspina %J Mathematics %D 2008 %I arXiv %X Here we define the concept of Qregularity for coherent sheaves on quadrics. In this setting we prove analogs of some classical properties. We compare the Qregularity of coherent sheaves on $\Q_n\subset \mathbb P^{n+1}$ with the Castelnuovo-Mumford regularity of their extension by zero in $\mathbb P^{n+1}$. We also classify the coherent sheaves with Qregularity $-\infty$. We use our notion of Qregularity in order to prove an extension of Evans-Griffiths criterion to vector bundles on Quadrics. In particular we get a new and simple proof of the Kn\"{o}rrer's characterization of ACM bundles. %U http://arxiv.org/abs/0802.0451v1