%0 Journal Article %T Salem sets with no arithmetic progressions %A Pablo Shmerkin %J Mathematics %D 2015 %I arXiv %X We construct Salem sets in $\mathbb{R}/\mathbb{Z}$ of any dimension (including $1$) which do not contain any arithmetic progressions of length $3$. Moreover, the sets can be taken to be Ahlfors regular if the dimension is less than $1$, and the measure witnessing the Fourier decay can be taken to be Frostman in the case of dimension $1$. This is in sharp contrast to the situation in the discrete setting (where Fourier uniformity is well known to imply existence of progressions), and helps clarify a result of Laba and Pramanik on pseudo-random subsets of the real line which do contain progressions. %U http://arxiv.org/abs/1510.07596v3