%0 Journal Article %T Non-K£¿hler Expanding Ricci Solitons II %A M. Buzano %A A. S. Dancer %A M. Gallaugher %A M. Wang %J Mathematics %D 2013 %I arXiv %X We produce new non-K\"ahler, non-Einstein, complete expanding gradient Ricci solitons with conical asymptotics and underlying manifold of the form $\R^2 \times M_2 \times \cdots \times M_r$, where $r \geq 2$ and $M_i$ are arbitrary closed Einstein spaces with positive scalar curvature. We also find numerical evidence for complete expanding solitons on the vector bundles whose sphere bundles are the twistor or ${\rm Sp}(1)$ bundles over quaternionic projective space. %U http://arxiv.org/abs/1311.5097v1