%0 Journal Article %T The Hamiltonians generating one-dimensional discrete-time quantum walks %A Tatsuya Tate %J Mathematics %D 2013 %I arXiv %R 10.4036/iis.2013.149 %X An explicit formula of the Hamiltonians generating one-dimensional discrete-time quantum walks is given. The formula is deduced by using the algebraic structure introduced previously. The square of the Hamiltonian turns out to be an operator without, essentially, the `coin register', and hence it can be compared with the one-dimensional continuous-time quantum walk. It is shown that, under a limit with respect to a parameter, which expresses the magnitude of the diagonal components of the unitary matrix defining the discrete-time quantum walks, the one-dimensional continuous-time quantum walk is obtained from operators defined through the Hamiltonians of the one-dimensional discrete-time quantum walks. Thus, this result can be regarded, in one-dimension, as a partial answer to a problem proposed by Ambainis. %U http://arxiv.org/abs/1306.3557v1