%0 Journal Article %T Orthogonal Dual Hyperovals, Symplectic Spreads and Orthogonal Spreads %A Ulrich Dempwolff %A William M. Kantor %J Mathematics %D 2013 %I arXiv %X Orthogonal spreads in orthogonal spaces of type $V^+(2n+2,2)$ produce large numbers of rank $n$ dual hyperovals in orthogonal spaces of type $V^+(2n,2)$. The construction resembles the method for obtaining symplectic spreads in $V(2n,q)$ from orthogonal spreads in $V^+(2n+2,q)$ when $q$ is even. %U http://arxiv.org/abs/1303.4073v2