%0 Journal Article %T On the fusion algebras of bimodules arising from Goodman-de la Harpe-Jones subfactors %A Satoshi Goto %J Mathematics %D 2012 %I arXiv %X By using Ocneanu's result on the classification of all irreducible connections on the Dynkin diagrams, we show that the dual principal graphs as well as the fusion rules of bimodules arising from any Goodman-de la Harpe-Jones subfactors are obtained by a purely combinatorial method. In particular we obtain the dual principal graph and the fusion rule of bimodules arising from the Goodman-de la Harpe-Jones subfactor corresponding to the Dynkin diagram $E_8$. As an application, we also show some subequivalence among $A$-$D$-$E$ paragroups. %U http://arxiv.org/abs/1212.4587v1