%0 Journal Article %T On the number and location of short geodesics in moduli space %A Christopher J. Leininger %A Dan Margalit %J Mathematics %D 2011 %I arXiv %R 10.1112/jtopol/jts025 %X A closed Teichmuller geodesic in the moduli space M_g of Riemann surfaces of genus g is called L-short if it has length at most L/g. We show that, for any L > 0, there exist e_2 > e_1 > 0, independent of g, so that the L-short geodesics in M_g all lie in the intersection of the e_1-thick part and the e_2-thin part. We also estimate the number of L-short geodesics in M_g, bounding this from above and below by polynomials in g whose degrees depend on L and tend to infinity as L does. %U http://arxiv.org/abs/1110.6434v1