%0 Journal Article %T Second cohomology for finite groups of Lie type %A Brian D. Boe %A Brian Bonsignore %A Theresa Brons %A Jon F. Carlson %A Leonard Chastkofsky %A Christopher M. Drupieski %A Niles Johnson %A Daniel K. Nakano %A Wenjing Li %A Phong Thanh Luu %A Tiago Macedo %A Nham Vo Ngo %A Brandon L. Samples %A Andrew J. Talian %A Lisa Townsley %A Benjamin J. Wyser %J Mathematics %D 2011 %I arXiv %R 10.1016/j.jalgebra.2012.02.028 %X Let $G$ be a simple, simply-connected algebraic group defined over $\mathbb{F}_p$. Given a power $q = p^r$ of $p$, let $G(\mathbb{F}_q) \subset G$ be the subgroup of $\mathbb{F}_q$-rational points. Let $L(\lambda)$ be the simple rational $G$-module of highest weight $\lambda$. In this paper we establish sufficient criteria for the restriction map in second cohomology $H^2(G,L(\lambda)) \rightarrow H^2(G(\mathbb{F}_q),L(\lambda))$ to be an isomorphism. In particular, the restriction map is an isomorphism under very mild conditions on $p$ and $q$ provided $\lambda$ is less than or equal to a fundamental dominant weight. Even when the restriction map is not an isomorphism, we are often able to describe $H^2(G(\mathbb{F}_q),L(\lambda))$ in terms of rational cohomology for $G$. We apply our techniques to compute $H^2(G(\mathbb{F}_q),L(\lambda))$ in a wide range of cases, and obtain new examples of nonzero second cohomology for finite groups of Lie type. %U http://arxiv.org/abs/1110.0228v2