%0 Journal Article %T Absorbing angles, Steiner minimal trees, and antipodality %A Horst Martini %A Konrad J. Swanepoel %A P. Oloff de Wet %J Mathematics %D 2011 %I arXiv %R 10.1007/s10957-009-9552-1 %X We give a new proof that a star $\{op_i:i=1,...,k\}$ in a normed plane is a Steiner minimal tree of its vertices $\{o,p_1,...,p_k\}$ if and only if all angles formed by the edges at o are absorbing [Swanepoel, Networks \textbf{36} (2000), 104--113]. The proof is more conceptual and simpler than the original one. We also find a new sufficient condition for higher-dimensional normed spaces to share this characterization. In particular, a star $\{op_i: i=1,...,k\}$ in any CL-space is a Steiner minimal tree of its vertices $\{o,p_1,...,p_k\}$ if and only if all angles are absorbing, which in turn holds if and only if all distances between the normalizations $\frac{1}{\|p_i\|}p_i$ equal 2. CL-spaces include the mixed $\ell_1$ and $\ell_\infty$ sum of finitely many copies of $R^1$. %U http://arxiv.org/abs/1108.5046v1