%0 Journal Article %T VC density and dp rank %A Hunter Johnson %J Mathematics %D 2011 %I arXiv %X We derive that dpR(n) \leq dens(n) \leq dpR(n)+1, where dens(n) is the supremum of the VC density of all formulas in n parameters, and dpR(n) is the maximum depth of an ICT pattern in n variables. Consequently, strong dependence is equivalent to finite VC density. %U http://arxiv.org/abs/1108.4398v3