%0 Journal Article %T Computing the Singularities of Rational Surfaces %A S. Perez-Diaz %A J. R. Sendra %A C. Villarino %J Mathematics %D 2011 %I arXiv %R 10.1090/S0025-5718-2014-02907-4 %X Given a rational projective parametrization $\cP(\ttt,\sss,\vvv)$ of a rational projective surface $\cS$ we present an algorithm such that, with the exception of a finite set (maybe empty) $\cB$ of projective base points of $\cP$, decomposes the projective parameter plane as $\projdos\setminus \cB=\cup_{k=1}^{\ell} \cSm_k$ such that if $(\ttt_0:\sss_0:\vvv_0)\in \cSm_k$ then $\cP(\ttt_0,\sss_0,\vvv_0)$ is a point of $\cS$ of multiplicity $k$. %U http://arxiv.org/abs/1107.5262v2